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The field of computer vision is experiencing a great-leap-forward development today. This paper aims at
providing a comprehensive survey of the recent progress on computer vision algorithms and their corresponding
hardware implementations. In particular, the prominent achievements in computer vision tasks such as image
classification, object detection and image segmentation brought by deep learning techniques are highlighted. On
the other hand, review of techniques for implementing and optimizing deep-learning-based computer vision al-

gorithms on GPU, FPGA and other new generations of hardware accelerators are presented to facilitate real-time
and/or energy-efficient operations. Finally, several promising directions for future research are presented to
motivate further development in the field.

1. Introduction

The recent progress of scientific technologies is producing a
“Cambrian explosive” [1] in developing new techniques that lead the
world entering promptly into the new artificial intelligence (AI) era.
Computer systems injected by the new AI techniques are intelligent to
perceive and understand the visual world, and even smarter than humans
in a number of specific tasks. The ability of being smart is primarily
provided by a computer vision system, including both the algorithms and
their hardware implementations, which gives us the ability to teach a
computer to understand the physical world from vision.

Computer vision tasks seek to enable computer system automatically
to see, identify and understand the visual world, simulating the same way
that human vision does [2]. Researchers in computer vision aspired to
develop algorithms for such visual perception tasks including (i) object
recognition in order to determine whether image data contains a specific
object, (ii) object detection in order to localize instances of semantic
objects of a given class, and (iii) scene understanding to parse an image
into meaningful segments for analyzing. Given the broad range of
mathematics being covered and the intrinsically difficult nature of
recovering unknowns from insufficient information to fully specify the
solution, the aforementioned tasks in the computer vision field are
extremely challenging. Studying these problems is both theoretically and
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practically important.

Early efforts have made a great contribution to the philosophy of
human vision and the basic computational theory of computer vision by
exploiting well-designed features and feature descriptors combined with
classical machine learning methods [3,4]. Although researchers have
spent several decades to teach machines how to see, the most advanced
machine at that time could only perceive common objects and struggled
at recognizing numbers of natural objects with infinite shape variations
similar to toddlers [5]. Fortunately, researchers have believed that
computer systems can go beyond regular object recognition and learn to
reveal details and insights of the visual world by training them to see
trillions of images and videos generated from Internet. To nourish the
computer brain, the largest image classification dataset “ImageNet” [6]
that contains 15 million images across 22,000 classes of objects was
created, upon which the well-known “deep learning” technology has
demonstrated its overwhelming superiority over traditional computer
vison algorithms that treat objects as a collection of shape and color
features.

Deep learning is a particular class of machine learning algorithm,
which typically simplifies the process of feature extraction and descrip-
tion through a multi-layer convolutional neural network (CNN). CNN
aims to transform the high-dimension input image into low-dimension
yet highly-abstracted semantic output. Powered by the massive data
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from ImageNet and the modern central processing units (CPUs) and
graphics processing units (GPUs), methods based on deep neural network
(DNN) achieve the state-of-the-art performance and bring an unprece-
dented development of computer vision in both algorithms and hardware
implementations. In recent years, CNN has become the de-facto standard
computation framework in computer vision. Numbers of deeper and
more complicated networks are developed to make CNNs deliver near-
human accuracy in many computer vision applications, such as classifi-
cation, detection and segmentation. The high accuracy, however, comes
at the price of large computational cost. As a result, dedicated hardware
platforms, from the general-purpose GPUs to application-specific pro-
cessors, are investigated to optimize for DNN-based workloads.

In this paper, we look into this rapid evolution of computer vision
field by presenting a brief survey on the key algorithms that make
computer systems perceivable and the underlying hardware platforms
that make these algorithms applicable. In particular, we will discuss how
the recent DNN algorithms accomplish the computer vision tasks (i.e.
image classification, object detection and image segmentation) with high
perception accuracy, and summarize the notable hardware units
including GPUs, field-programmable gate arrays (FPGAs) and other
advanced mobile hardware platforms that are adapted or designed to
accelerate DNN-based computer vision algorithms. According to our
knowledge, there are recent summaries in the literature that discuss the
DNN-based algorithms for particular tasks, including image classification
[71, object detection [8], image segmentation [9], and the corresponding
hardware accelerators such as FPGAs [10]. There is no comprehensive
survey that covers both algorithm and hardware simultaneously. A
thorough review of existing works from both topics is essential for re-
searchers to understand the entire picture and motivate further progress
in the computer vision field.

The reminder of this paper is organized as follows. In Section 2, we
overview the computer vision algorithms for three visual perception
tasks: image classification, object detection and image segmentation.
Important hardware platforms including GPUs, FPGAs and other hard-
ware accelerators for implementing the DNN-based algorithms are dis-
cussed in Section 3. Finally, we conclude in Section 4.

2. Computer vision algorithms
2.1. Image classification

Image classification is a kind of biologically primary ability of human
visual perception system. It has been an active task and plays a crucial
role in the field of computer vision, which aims to automatically classify
images into pre-defined classes. For decades, researchers have laid path
in developing advanced techniques to improve the classification accu-
racy. Traditionally, classification models can perform well only on small
datasets such as CIFAR-10 [11] and MNIST [12]. The great-leap-forward
development of image classification occurred when the large-scale image
dataset “ImageNet” was created by Feifei Li in 2009 [6]. It was almost the
same time when the well-known deep learning technologies started to
show great performance in classification and stepped onto the stage of
computer vision.

Before the explosion of deep learning methods, research works put
lots of efforts in designing scale-invariant features (e.g. SIFT [13], HOG
[14], GIST [15]), feature representations (e.g. Bag-of-Features [16],
Fisher Kernel [17]) and classifiers (e.g. SVM [18]) for image classifica-
tion [19,20]. However, these manually crafted features work against
objects in natural images with complicated background, variant color,
texture, illumination and ever-changing poses and view factors. At the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012,
AlexNet [21] won the first prize by a significant margin over the second
place that was based on SIFT and Fisher Vectors (FVs) [20]. It demon-
strates that the classification model based on deep CNN performs much
more robustly than other conventional methods in the presence of
large-scale variations. It also represents a remarkable milestone in the
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modern history of neural network after a long trough period.

A typical deep CNN model consists of several convolution layers
followed by activation functions and pooling layers, and several fully
connected layers before prediction. It comes into deep structure to
facilitate filtering mechanisms by performing convolutions in multi-scale
feature maps, leading to highly abstract and discriminative features.

AlexNet has 8 convolution layers, 3 pooling layers and 3 fully con-
nected layers, with a total of 60 million parameters. It successfully uses
ReLU as the activation function instead of sigmoid. Furthermore, data
augmentation and dropout are widely used today as efficient learning
strategies. AlexNet is hence known as the foundation work of modern
deep CNN.

Inspired by AlexNet, VGGNet [22] and GoogleNet [23] focus on
designing deeper networks to further improve accuracy. They were the
runner-up and winner of ILSVRC in 2014 respectively. By repeatedly
stacking 3 x 3 convolutional kernels and 2 x 2 maximum pooling layers,
VGGNet successfully constructs a convolutional neural network of 16-19
layers. GoogleNet has 22 layers, but its floating-point operations and
number of parameters are much less than those of AlexNet and VGGNet
by removing the fully-connected layers and optimizing the operations of
sparse matrices.

Although deeper networks offer better accuracy, simply increasing
the number of layers cannot continuously improve accuracy because of
vanishing/exploding gradient information during network training.
ResNet [24], which makes another great progress of deep network
structure, proposes to use a shortcut connection between residual blocks
to make full use of information from previous layers and keep the gra-
dients during backward propagation. By using this residual block, ResNet
successfully trains very deep networks with up to 152 layers and was the
winner of ILSVRC in 2015. Following the idea of ResNet, DenseNet [25]
establishes connections between all previous layers and the current layer.
It concatenates and, therefore, reuses the features from all previous
layers. DenseNet presents with great advantage in classification accuracy
on ImageNet, as we can see in Table 1. Based on these works in the
literature, connecting different network layers has shown promising
improvement in learning representations of deeper networks.

By using ResNet or DenseNet as the major backbone structure, re-
searchers focus on improving the functionality of neural network blocks.
SENet [26], which was the winner of ILSVRC 2017, proposes a “squee-
ze-and-excitation” (SE) unit by taking channel relationship into account.
It learns to recalibrate channel-wise feature maps by explicitly modeling
the interdependencies among channels, which is consequently exploited
to enhance informative channels and suppress other useless channels.

Despite the high classification performance of the aforementioned
CNN models, appropriately designing the optimal network structure

Table 1
Summary of different CNN models on ImageNet classification task.
Model Time  Accuracy  Num. of Num. of Num. of
Parameters FLOPs Layers

AlexNet [21] 2012 57.2% 60 M 720M 8

VGGNet [22] 2014 71.5% 138M 15,300 M 16

GoogleNet 2014 69.8% 6.8M 1,500 M 22
[23]

ResNet [24] 2015 78.6% 55M 2,300 M 152

DenseNet 2017 79.2% 25.6 M 1,150 M 190
[25]

SENet [26] 2017 82.7% 145.8 M 42,300 M -

NASNet [27] 2018 82.7% 88.9M 23,800 M -

SqueezeNet 2016 57.5% 1.2M 833 M -
[29]

MobileNet 2017 70.6% 4.2M 569 M 28
[30]

ShuffleNet 2018 73.7% 4.7M 524 M -
[31]

ShiftNet-A 2018 70.1% 4.1 M 1,400 M -
[32]

FE-Net [33] 2019 75.0% 59M 563 M -
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often requires significant engineering work. NASNet [27] studies a
paradigm to learn the optimal convolutional architecture based on
training data. It adopts a neural architecture search (NAS) framework
derived from reinforcement learning [28]. In addition, it designs a new
search space to enable network mapping from a proxy dataset (e.g.
CIFAR-10) to ImageNet, and a regularization technique for generaliza-
tion purpose. Offering less computational complexity than SENet, NAS-
Net achieves the state-of-the-art accuracy on ImageNet, as shown in
Table 1.

The aforementioned deep networks facilitate classification to be more
accurate. However, in many real-life classification applications, such as
robotics, autonomous driving, smartphone, etc., the classification task is
highly constrained by the computational resources that are available. The
problem thus becomes to pursue the optimal accuracy subject to a limited
computational budget (i.e. memory and/or MFLOPs). Therefore, a set of
lightweight networks such as SqueezeNet [29], MobileNet [30], Shuf-
fleNet [31], ShiftNet [32] and FE-Net [33] start a wave.

SqueezeNet substitutes most 3 x 3 filters by 1 x 1 filters and cuts
down the numbers of input channels for 3 x 3 filters to reduce the
network complexity. To maximize the accuracy with a limited number of
network parameters, it delays the down-sampling operation to avoid
information loss in early layers. SqueezeNet is 50 x smaller than AlexNet.
If combined with deep compression [34], it can even be reduced to be
510 x smaller than AlexNet. Depth-wise separable convolution is
employed to decompose the standard convolution into depth-wise
convolution and point-wise convolution in MobileNet [30]. Depth-wise
convolution performs convolution on each input channel with one fil-
ter, while point-wise convolution combines those separate channels by
using 1 x 1 convolution. This novel design of convolution reduces both
the computational complexity and the number of parameters.

ShuffleNet [31] uses point-wise group convolution that divides the
input feature maps into groups and performs convolutions separately on
each group to reduce computational cost. However, because the grouping
operations limit the communication between different channels, Shuf-
fleNet further shuffles the channels and feeds each group in the following
layer with multiple channels from different groups in order to distribute
information across channels.

In addition to the strategies adopted to reduce the computational cost
of spatial convolution (e.g., depth-wise convolution), ShiftNet [32] pre-
sents a parameter-free, FLOP-free shift operation to replace expensive
spatial convolutions. The proposed shift operation is able to provide
spatial information communication by shifting feature maps, making it
possible to aggregate spatial information by the following point-wise
convolutional layer. More recently, FE-Net [33] further finds that only
a few shift operations are sufficient to provide spatial information
communication. A sparse shift layer (SSL) is proposed to perform shift
operations on a small portion of feature maps only. With only 563 M
FLOPs, FE-Net achieves the state-of-the-art performance among all major
lightweight classification models on ImageNet, as shown in Table 1.

The aforementioned network models are briefly summarized in
Table 1. In addition to the conventional image classification problem
with thousands of classes and complex scenes, multi-label classification
(e.g. face attributions [35,36]) and fine-grained classification (e.g.
Stanford Dogs classification [37]) are also of great interest in the com-
puter vision area.

Furthermore, the great success of deep learning in image domain has
stimulated a variety of techniques to learn robust feature representations
for video classification, where the semantic contents such as human ac-
tions [38] or complex events [39] are automatically categorized. Early
works often treat a video clip as a collection of frames. Video classifica-
tion is implemented by aggregating frame-level CNN features by aver-
aging or encoding [40]. Standard classifiers, such as SVM, are finally
used for recognition [41,42].

In contrast to the frame-level classification methods, there are a
number of other approaches applying end-to-end CNN models to learn
the hidden spatio-temporal patterns in video. For example, the typical

Integration, the VLSI Journal xxx (xxxx) Xxx

C3D features [43] are derived from a deep 3-D convolutional network
trained on the large-scale UCF101 dataset. Moreover, a two-stream
approach [44] is proposed to factorize the learning problem of video
representation into spatial and temporal cues separately. Specifically, a
spatial CNN is adopted to model the appearance information from RGB
frames, while a temporal CNN is used to learn the motion information
from the dense optical flow among adjacent frames.

Since the two-stream approach only depicts movements within a
short time window and fails to consider the temporal order of different
frames, several recurrent connection models for sequential data,
including recurrent neural networks (RNNs) and long short-term memory
(LSTM) models, are leveraged to model the temporal dynamics for
videos. In Ref. [45], two two-layer LSTM networks are trained with
features from the two-stream approach for action recognition. In
Ref. [46], the LSTM model and CNN model are combined to jointly learn
spatial-temporal cues for video classification. In Refs. [47,48], attention
mechanism is introduced for convolutional LSTM models to discover
relevant spatio-temporal volumes for video classification.

2.2. Object detection

Object detection, which is to determine and locate the object in-
stances either from a large number of predefined categories in natural
images or for a given particular object (e.g., Donald Trump's face, the
distorted area in an image, etc.), is another important and challenging
task in computer vision. Object detection and image classification share a
similar technical challenge: both of them must handle a large number of
highly variable objects. However, object detection is more difficult than
image classification, as it must identify the accurate localization of the
object of interest.

Historically, most research efforts have focused on detecting a single
category of given objects such as pedestrian [14,49] and face [50] by
designing a set of appropriate features (e.g. HOG [14,49], Harr-like [50],
LBP [51], etc.). In these works, objects are detected by using a set of
predefined feature templates matching with each location in the image or
feature pyramids. Standard classifiers such as SVM [14,49] and Adaboost
[50] are often used for this purpose.

In order to build a general-purpose, robust object detection system,
research community has started to develop large-scale, multi-class
datasets in recent years. Pascal-VOC 2007 [52] with 20 classes and
MS-COCO [53] with 80 object categories are two iconic object detection
datasets. In these two datasets, detection results are evaluated by two
possible metrics: (i) Average Precision (AP) by counting the correctly
detected bounding boxes for which the overlap ratio exceeds 0.5, and (ii)
mean Average Precision (mAP) by averaging the AP values associated
with different thresholds of the overlap ratio.

Recently, deep learning has substantially advanced the object detec-
tion field. As shown in Fig. 1, striking improvements in object detection
accuracy have been demonstrated over both Pascal-VOC 2007 and MS-
COCO by taking advantages of deep learning techniques.

R-CNN [54] was the first two-stage method among the earliest
CNN-based generic object detection techniques. It adopts AlexNet to
extract a fixed-length feature vector from each resized region proposal,
which is the object candidate generated by selective search algorithm
[55]. Each region is then classified by a set of category-specific linear
SVMs. The method shows significant improvement in mAP over the
traditional state-of-the-art DPM detector [49]. It is, however, not elegant
and inefficient, due to its multistage complex pipeline and the redundant
CNN feature extraction from numerous region proposals.

Inspired by the spatial pyramid pooling in SPPnet [56] that leverages
fixed-length feature outputs for arbitrary input image sizes, Fast R-CNN
[57] incorporates a ROI pooling layer before the fully-connected layer to
obtain a fixed-length feature vector for each proposed region, so that only
a single convolution operation is required for the input image. Fast
R-CNN substantially improves the detection efficiency over R-CNN and
SPPnet. However, it requires expensive computation for external region
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Fig. 1. Object detection accuracy on (a) Pascal-VOC 2007 and (b) MS-COCO for
different object detection techniques based on deep learning.

proposal, which now becomes the major bottleneck in overall efficiency.

To address the aforementioned challenge associated with computa-
tional complexity, Faster R-CNN [58] further proposes a Region Proposal
Network (RPN). It then integrates both RPN (for proposal generation)
and Fast-RCNN (for region classification) into a unified, end-to-end
network structure. RPN and Fast-RCNN share most of the convolution
layers, and the features from the last shared layer are used for two
separate tasks (i.e. proposal generation and region classification). With
this highly efficient architecture, Faster R-CNN achieves 6 FPS inference
speed on a GPU and the state-of-the-art detection accuracy on
Pascal-VOC 2007.

As a follow-up work on Faster R-CNN, Mask R-CNN [59] was later
proposed to combine object detection and pixel-level instance segmen-
tation based on Faster R-CNN. By using ResNet101-FPN as the backbone
network, Mask R-CNN demonstrated the best detection accuracy on
MS-COCO in 2017.

The two-stage R-CNN architectures are able to offer superior accu-
racy. However, real-time efficiency is required for object detection by
many real-world applications. In this regard, the simple one-stage ar-
chitectures are often preferred. YOLO [60] is the first one-stage method
that casts detection task as a regression problem. It divides an image into
a number of S x S grids and proposes B bounding boxes for each grid.
Next, by using the CNN features of the input image globally, it directly
predicts the coordinates, confidence scores and C-class probabilities for
these bounding boxes. Without the proposal generation step, YOLO can
achieve the real-time speed of 45 FPS. On the other hand, since YOLO
investigates few prediction candidates, it is less accurate than the
two-stage models, especially for small objects detection.

The Single Shot MultiBox Detector (SSD) [61] follows a similar
one-stage strategy. It outperforms YOLO in accuracy due to two major
improvements. First, SSD extracts important features from multi-scale
CNN feature maps. Second, it adopts a number of default bounding
boxes by following the concept of anchor proposed by Faster R-CNN.

YOLOvV2 absorbs the merit of SSD and Faster R-CNN by introducing
the anchor mechanism [62]. The new YOLOv2 model both improves
detection accuracy and reduces inference time by a large margin over
YOLO on Pascal-VOC 2007. However, its accuracy is still worse than the
two-stage methods for generic detection tasks (e.g. MS-COCO).

In the latest implementation of YOLOv3 [63], several anchor boxes
are assigned on three different scaled feature maps, thereby producing
much more proposals than YOLO and YOLOv2. Small objects can thus be
accurately detected from the anchors in low-level feature maps with
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Table 2
Summary of different object detection architectures (FPS based on a Pascal Titan
X GPU).

Architecture mAP (Pascal-VOC mAP (MS- Num. of FPS
2007) COCO) FLOPs

R-CNN [54] 66.0% - - 0.1

SPPnet [56] 63.1% - - 1

Fast R-CNN [57] 70.0% 35.9% - 0.5

Faster R-CNN 73.2% 36.2% - 6
[58]

Mask R-CNN [59] - 39.8% - 3.3

YOLO [60] 63.4% - - 45

SSD513 [61] 76.8% 31.2% - 8

YOLOV2 (608) 78.6% 21.6% 62.94G 67
[62]

YOLOV3 (416) - 33.0% 65.86 G 35
[63]

small receptive fields. In addition, it uses a powerful backbone network
darknet-53 with several sets of residual blocks. YOLOv3 achieves similar
accuracy as Faster R-CNN, while maintaining real-time efficiency. It is
the current state-of-the-art object detection framework for real-time
applications.

We summarize the performance metrics of the aforementioned
detection models in Table 2. In addition to the one-stage and two-stage
architectures, there are several other spotlights for object detection.
For example, the relationship of different objects is considered by
designing an object relation module in Ref. [64]. Generative Adversarial
Network (GAN) is used to generate the super-resolution of small object
patches [65] or features [66] to help with the detection of small objects.

In contrast to the significant progress in object detection focusing on
still images, video object detection has received less attention. Generally,
object detection for videos is realized by fusing the results of object
detection on the current frame and object tracking from the previous
frames. Deep SORT [67] is a typical tracking-by-detection algorithm for
multi-object tracking in videos. By integrating appearance information
extracted from a CNN-based object detector with the original SORT [68]
algorithm, it is able to achieve real-time tracking. Recently, several ap-
proaches have been proposed for end-to-end video object detection. In
Ref. [69], temporal feature aggregation is performed to improve feature
quality and recognition accuracy. In Ref. [70], data redundancy between
consecutive frames is exploited. These seminal works have been adopted
by the winner of ImageNet Video Object Detection Challenge 2017 [71].

2.3. Image segmentation

Image classification should recognize what objects are in the visual
scene (as shown by the example in Fig. 2(a)), while object detection re-
veals where the objects are (as shown by the example in Fig. 2(b)). In this
sub-section, we further focus on the problem of how the objects are
exactly presented in the visual scene by using image segmentation.

Image segmentation is regarded as pixel-level classification, which
aims at dividing an image into meaningful regions by classifying each
pixel into a specific entity. In traditional image segmentation, the idea of
unsupervised local region merging and splitting has been extensively
explored based on clustering [72], optimizing global criteria [73], or user
interaction [74]. The blooming deep learning technologies have pro-
moted large-scale supervised classification moving from image-level
object classification to box-level object localization, and further to
pixel-wise object segmentation. Therefore, today's image segmentation is
object oriented and can be divided into two subtle branches: (i) semantic
segmentation, which assigns each pixel in an image to a semantic object
class, as shown in Fig. 2 (c), and (ii) instance segmentation, which pre-
dicts different labels for different object instances as a further improve-
ment to semantic segmentation, as shown in Fig. 2 (d).

In addition to classification and detection, the challenges of Pascal-
VOC 2012 [76] and MS-COCO provide segmentation competitions as
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Fig. 2. An example of different visual perception problems [75]: (a) image classification, (b) object detection, (c) semantic segmentation, and (d) instance

segmentation.

well. They are two important datasets for image segmentation on which
most research works are evaluated. In addition to them, Cityscapes [77]
and MVD [78] provide street scenes with a large number of traffic objects
in each image. The popular metrics to evaluate pixel-level segmentation
accuracy are pixel accuracy (PA, i.e., the proportion of pixels predicted
correctly), mean pixel accuracy (mPA) of all classes, mean intersection
over union (mIOU), and frequency weighted intersection over union
(FWIOU). Among them, mIOU is often preferred for its simplicity and
representativeness.

Early segmentation techniques based on deep learning usually apply
CNN as the feature descriptor for each pixel that is described by its sur-
rounding patch [79,80]. This CNN-based framework is problematic in
efficiency and is not sufficiently accurate for redundant feature extrac-
tion. Fully convolutional network (FCN) [81] is the forerunner that
successfully implements pixel-wise dense predictions for semantic seg-
mentation in an end-to-end CNN structure. It replaces the fully-connected
layers of the well-known classification architectures (e.g.VGG [22],
GoogleNet [23], etc.) with convolution layers to facilitate inputs of
arbitrary sizes, and outputs a heatmap rather than a vector to indicate
classification scores. Prediction loss is then measured by the pixel-wise
loss between the upsampled heatmap using deconvolution and the
labeled image of original size. FCN shows great improvement in pixel
accuracy over traditional segmentation methods on Pascal-VOC 2012.
However, the basic FCN structure fails to capture a large number of
features and it does not consider spatial consistency between pixels,
which hinders its application to certain problems and scenarios.

In any wise, the success of FCN architecture makes it popular and it
has been actively followed by many subsequent segmentation works
[82-84]. Generally, using classification models without fully-connected
layers as the backbone network to produce low-resolution feature maps
is referred to as the encoder, while the symmetric mapping from the
low-resolution image to pixel-wise classification outcome is termed as
the decoder. With the well-known backbone network as encoder, alter-
native CNN-based segmentation works are usually variant in decoder
implementation. For example, the decoding stage of SegNet [82] uses the
max-pooling indices from corresponding feature maps in its encoder for
upsampling. The resultant maps are then convolved with a set of filters to

generate the restored feature maps for dense prediction. In another
typical encoder-decoder framework U-Net [83] that is designed for
biomedical image segmentation, the upsampling layer directly concate-
nates with a set of cropped duplicates of corresponding feature maps in
encoder to enhance resolution during the decoder process.

Image segmentation is a difficult problem that requires both good
pixel-level accuracy, which relies on fine-grained local features, and
classification accuracy, for which global context of the image is crucial to
resolve local ambiguities. However, the pooling strategy in classic CNN
architectures is a defect for losing the detailed information when multi-
pooling steps are performed.

One possible and common solution to integrate context knowledge is
to refine the output to have fine-grained details for accurate segmenta-
tion by Conditional Random Field (CRF) [85-87]. Alternatively, instead
of using pooling strategy, the problem can be solved by expanding
receptive fields in which each neuron is connected to a subset of neurons
in the previous layer. Dilated convolution [88], which is a regular
convolution with upsampled filters or dilated filters, is proposed to
exponentially expand receptive fields without sacrificing resolution, as
shown in Fig. 3. The DeepLab [85] model takes advantages of both
dilated convolution and CRF refinement by post-processing to integrate
context knowledge. As can be seen in Fig. 4, it achieves much higher
prediction accuracy than SegNet and FCN and is thus considered as a
milestone work for semantic segmentation.

Several recently-proposed methods, such as RefineNet [84] and
PSPNet [89], try to avoid or restore the loss of down-sampling in encoder
by fusing low-level and high-level features. RefineNet designs a decoder
module by using both short-range and long-range residual connections to
capture rich contextual information. It has achieved the state-of-the-art
performance on 7 public datasets. In PSPNet, a pyramid pooling mod-
ule is proposed to aggregate different region-based context information
to exploit the capability of global context information.

Inspired by the spatial pyramid pooling, DeeplLab V2 [87] in-
vestigates an atrous spatial pyramid pooling (ASPP) module by incor-
porating dilated convolution with different sampling rates and spatial
pyramid pooling to capture multi-level context information. In the latest
DeepLab V3+ [90], an Xception module [91] is introduced to the
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Fig. 3. The receptive field of (a) 1-dilated convolution, (b) 2-dilated convolution, and (c) 4-dilated convolution [88].

encoder, together with the improved ASPP module. It obtains the
state-of-the-art performance on Pascal-VOC 2012, as shown in Fig. 4.

The aforementioned end-to-end architectures mainly focus on se-
mantic segmentation. Comparatively, most works on instance segmen-
tation follow the pipeline that segmentation precedes recognition. For
example, DeepMask [92] and the instance-sensitive fully convolutional
network [93] use Fast-RCNN to classify the learned segment proposals.
The fully convolutional instance segmentation (FCIS) combines the
segment proposal system [93] and object detection in Ref. [94] to predict
object classes, boxes, and masks simultaneously. However, this method is
not as accurate as Mask-RCNN [59] on the MS-COCO instance segmen-
tation challenge. Mask-RCNN extends Faster-RCNN by adding a mask
prediction branch in addition to bounding box regression and class
recognition. The very recent path aggregation network (PANet) [95]
enhances the feature hierarchy by a bottom-up path augmentation. With
subtle computation overhead, it reaches the first place in the MS-COCO
challenge of instance segmentation task and also represents the
state-of-the-art on MVD and Cityscapes.

Although pixel-wise image segmentation is progressing rapidly with
superior accuracy, it is still far from practical usage, such as video se-
mantic segmentation, due to the high complexity of dense prediction.
Therefore, developing highly efficient image segmentation framework is
one of the grand challenges in the computer vision community.

3. Hardware implementation

The recent breakthroughs in developing computer vision algorithms
are not only driven by deep learning technologies and large-scale data-
sets, but also relying on the major leaps of hardware acceleration that
provides powerful parallel computing architectures to enable the effi-
cient training and inference of large-scale, complex and multi-layered
neural networks.

Hardware acceleration takes advantage of computer hardware to
perform computing tasks with lower latency and higher throughput than
the conventional software implementation running on general-purpose
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1

PSPNet DeepLab {'

DeepLab V2

DeepLab V3
RefineNet e

0.0
2014 2015 2015 2016 2016 2016 2017 2018

Fig. 4. mIOU for different semantic segmentation methods on Pascal-
VOC 2012.

CPUs [98]. Historically, the von-Neumann-style compute-centric archi-
tectures (e.g. CPUs) are primarily designed for effective serial computa-
tions with complex task scheduling. It suffers from high energy
consumption and low memory bandwidth for data movement when
evaluating the deep CNN networks that require parallel dense compu-
tation, high data reusability and large memory bandwidth [99].

Fig. 5(a) compares neural network with other approaches in terms of
accuracy and scale (i.e. data/model size). The traditional machine
learning methods, such as decision tree, SVM, etc., are referred as “Other
Approaches” in Fig. 5(a). They are generally based on manually designed
features. Due to the limited learning capability of these traditional
methods, their accuracy cannot continuously increase with data/model
scale. On the other hand, deep neural networks are highly scalable in
their learning capability when deeper network structures and larger data
sets are adopted.
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8 Neural Networks
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Fig. 5. (a) Comparison between neural networks and other approaches in terms
of accuracy and scale (i.e. data/model size) [96], and (b) trade-off between
flexibility and efficiency for different hardware implementations [97].
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Practically, an operation can be computed faster in the hardware
platform that is application-specifically designed and/or programmed.
Hardware acceleration thus steps forward for heavy customization in
processing capability by allowing great parallelism, having specific data-
paths for temporal variants, and reducing the overhead of instruction
control [98]. For decades, hardware customization in the form of GPUs,
FPGAs, and application-specific integrated circuits (ASICs) offer a
promising path in trading flexibility for computation efficiency, as seen in
Fig. 5(b). In this section, we review a number of popular hardware
implementations including GPUs, FPGAs and other application-specific
accelerators.

3.1. Graphics processing units (GPUs)

GPUs were initially developed to accelerate graphics processing. A
GPU is particularly designed for integrated transform, lighting, triangle
setup/clipping, and rendering [100]. A modern GPU is not only a
powerful graphics engine but also a highly parallelized computing pro-
cessor featuring high throughput and high memory bandwidth for
massive parallel algorithms, which is dubbed as GPU computing or
general-purpose computing on GPU (GPGPU).

In contrast to multicore CPUs that are typically out-of-order, multi-
instructional, running at high frequencies and using large-size caches to
minimize the latency of a single-thread, GPGPUs consist of thousands of
cores that are in-order, operating at lower frequencies and relying on
smaller-size caches. To create high performance GPU-accelerated appli-
cations with parallel programming, a variety of development platforms
such as compute unified device architecture (CUDA) [101] and open
computing language (OpenCL) [102], are studied and utilized for
GPU-accelerated embedded systems, desktop workstations, enterprise
data centers, cloud-based platforms and high-performance computing
(HPC) servers.

A number of hardware vendors have produced GPUs. Among them,
Intel, Nvidia and AMD/ATI have been the market share leaders [100]. As
shown in Fig. 6, the evolution of GPGPUs began in 2007, when Nvidia
released its CUDA development environment. A great variety of GPUs
have been designed for a specific usage, such as Nvidia GeForce GTX and
AMD Radeon HD GPUs for powerful gaming, and Nvidia Quadro and
Titan X series for professional workstation [100]. More recently, the
emergence of deep learning technology ushers in significant advances in
GPU computing.

Taking CNN as an example, it can take advantages of the nature of
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algorithmic parallelism in the following aspects [103]: (i) the convolu-
tion operation of an n x n matrix using a k x k kernel can be in parallel;
(ii) the subsampling/pooling operation can be parallelized by executing
different pooling operations separately; (iii) the activation of each
neuron in a fully connected layer can be parallelized by creating a
binary-tree multiplier. With great parallel processing structures and
strong floating-point capabilities, GPGPUs have been recognized to be a
good fit to accelerate deep learning. A number of GPU-based CNN li-
braries have been developed to facilitate highly optimized CNN imple-
mentation on GPUs, including cuDNN [104], Cuda-convnet [105] and
several other libraries built upon the popular deep learning frameworks,
such as Caffe [106], Torch [107], Tensorflow [108], etc.

Computational throughput, power consumption and memory effi-
ciency are three important metrics when implementing deep learning on
GPUs. Fig. 6 summarizes the peak performance of recent Nvidia GPUs for
single-precision floating-point (FP32) arithmetic measured by GFLOPs
and power consumption gauged by Thermal Design Power (TDP). The
GeForce 10 series, based on the most powerful GPU architecture “Nvidia
Pascal”, is a set of consumer graphics cards released by Nvidia in 2016
[110]. With an inexpensive GeForce GTX 1060, composed of 1280 CUDA
cores delivering 3855 GFLOPs in computational throughput, one can get
into deep learning with affordable cost.

For professional usage, Titan V and Tesla V100 are much more
powerful and scalable than the GeForce 10 series based on the Pascal and
a new Volta architecture, which integrates CUDA cores with the new
Tensor core technology. Tensor cores are especially designed for deep
learning, which offer an extremely wide memory bus. Compared to
CUDA cores, they improve the peak performance by up to 12 x for
training and up to 6 x for inference. In addition to their high throughput,
Tensor cores allow efficient computation with 16-bit word-length,
implying that the amount of transferred data can be doubled over 32-
bit arithmetic with the same memory bandwidth.

Nvidia Jetson is a leading low-power embedded platform that enables
server-grade computing performance on edge devices. Jetson TX2 is
based on the 16 nm NVIDIA Tegra “Parker” system-on-a-chip (SoC),
which delivers 1 TFLOPs of throughput in a credit-card-sized module. A
new series of RTX gaming cards (i.e., RTX 2070/2080/2080Ti) with
Turing architectures were unveiled in August 2018. They have Tensor
cores on board and support unrestricted 16-bit floating-point (FP16), 8-
bit integer (INT8) and 4-bit integer (INT4) arithmetic. Among them,
RTX 2080Ti offers the promising performance with more than 100
TFLOPs in FP16.
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Fig. 6. Computational throughput in terms of GFLOPS and power consumption in terms of TDP (watts) for single-precision floating-point arithmetic [109].
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Fig. 7. A typical FGPA architecture to implement DNNs [115].

When evaluating memory efficiency for GPUs, memory size and
memory bandwidth are two important metrics. Today, it is common to
have 11-12 GB memory on start-of-the-art gaming cards. Many Tesla
GPUs have 16 GB memory, and several Turing architecture Quadro
models have 24 GB memory (e.g. RTX 6000) or 64 GB memory (e.g. RTX
8000). For a given deep learning task, the peak performance of GPU is
often far from the actual performance. In most practical applications, the
throughput of a GPU is about 15-20% of its peak performance [111]. It,
in turn, implies that evaluating DNNs is actually limited by memory
bandwidth, instead of computing power. Adopting GPUs with high
memory bandwidth is a valid strategy to speed up both training and
inference. For example, GTX Titan XP (10,709 FP32 GFLOPS and
548 GB/s) can be faster than GTX 1080Ti (10,609 FP32 GFLOPS and
484 GB/s) by up to 13% on bandwidth-limited tasks. GTX Titan V
(652.8 GB/s), Tesla V100 (900 GB/s) and P100 (720 GB/s) are even
faster than GTX Titan XP [109]. In addition to Nvidia, AMD has also
released its high-end Vega GPUs with high memory bandwidth similar to
Titan V [100].

In order to address the fundamental issue of limited computing
throughput and memory bandwidth, multi-GPU systems allow single
machine and multi-GPUs or even distributed multi-system, multi-GPU
configurations. For a system with single machine and multi-GPUs
working on separate tasks, one can directly access any available GPU
without coding in CUDA. On the other hand, for multi-GPUs working on
shared tasks such as training several models with different hyper-
parameters, distributed training is needed. Nvidia has a collective com-
munications library (NCCL) [112] that implements multi-GPU and
multi-node collective communication primitives to make full use of all
GPUs within and across multi-nodes with maximum bandwidth.
Distributed training is now supported by many popular deep learning
frameworks such as Tensorflow, Caffe, etc. These techniques reduce
computational time linearly with the number of GPUs [112].

3.2. Field-programmable gate arrays (FPGAs)

While GPUs have been demonstrated to offer extremely high
throughput and are broadly used for hardware acceleration of DNNs,
they are often not preferred for energy/power-constrained applications,
such as IoT devices, due to their high power consumption. DNN accel-
eration thus moves towards an alternative solution based on energy-
efficient FPGAs. FPGA allows us to implement irregular parallelism,
customized data type and application-specific hardware architecture,
offering great flexibility to accommodate the recent DNN models that are
featured with increased sparsity and compact network structures.
Further, FPGA can be reprogrammed after manufacturing for desired
functions and applications. Due to these attractive features, a large
number of FPGA-based accelerators have been proposed for both HPC
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data centers [113] and embedded applications [114].

FPGA is a component that contains an array of programmable logic
blocks connected via a hierarchy of reconfigurable interconnects. Today's
FPGAs usually contain (i) digital signal processing units (DSPs) for
multiply-add-accumulation (MAC) operations, (ii) lookup tables (LUTs)
for combinatorial logic operations, and (iii) block RAMs for on-chip data
storage [10]. Fig. 7 shows a typical FPGA architecture to implement
DNNs [115]. It consists of memory data management (MDM) unit,
on-chip data management (ODM) unit, general matrix multiply (GEMM)
unit that is implemented by a set of processing elements (PEs) to perform
one or more MAC operations, and msic-layers (MLU) unit where ReLU
pooling and batch normalization are computed.

The FPGA architecture in Fig. 7 executes a DNN model by following
several major steps. It first fetches DNN weights and input feature maps
into an on-chip buffer (i.e. ODM) from MDM. Next, the GEMM unit
performs matrix operations and transfers the outcomes to MLU for ReLU/
batch normalization/pooling. The output of MLU goes to another ODM
unit and will be accessed by the subsequent convolutional and/or fully
connected layers. If the on-chip buffer does not have sufficiently large
capacity, the intermediate results must be temporarily stored in on-chip
or off-chip memory.

Historically, an FPGA system is often specified at register-transfer
level (RTL) by using hardware description language (HDL) such as Ver-
ilog or VHDL. This low-level design methodology needs substantial ef-
forts and hardware expertise to carefully describe the detailed hardware
architecture, including the massive concurrency between different
hardware modules. Recently, high-level synthesis (HLS) tools have been
successfully developed to facilitate efficient FPGA design by using high-
level programming language such as C and C++, and automatically
compile high-level description to generate low-level specification (i.e.
HDL) [116]. With the aforementioned synthesis flow, the design cost of
FPGA accelerators can be significantly reduced. However, there is an
important tradeoff between RTL and HLS approaches in terms of design
cost and system performance.

In practice, a DNN model is often trained or fine-tuned on a high-
performance computing platform such as GPU, while FPGA accelera-
tion is implemented for DNN inference to process given input data based
on the pre-trained DNN model. As illustrated in Tables 1 and 2, computer
vision algorithms based on DNNs are often associated with high
computational workload (i.e., a large number of FLOPs) and large
memory storage (i.e., a large number of network parameters), while the
memory bandwidth of FPGAs is often less than 10% of that of GPUs.
Hence, the grant challenge is to find an efficient mapping from the pre-
trained complex DNN model to the limited hardware resources (i.e.,
high-density logic and memory blocks) offered by FPGAs. Such a tech-
nical challenge has been tackled via hardware-friendly algorithmic op-
timizations, including: (i) algorithmic operation, (ii) data-path
optimization and (iii) model compression.

Algorithmic operation: Computational transforms, such as GEMM, fast
Fourier transform (FFT) and Winograd transform, may be applied to
feature maps and/or convolutional kernels to reduce the number of
arithmetic operations during inference. GEMM is a popular way of pro-
cessing DNNs in CPUs and GPUs, which vectorizes the computation of
convolutional and fully connected layers [117]. FFT casts 2D convolution
to element-wise matrix multiplication, thereby reducing the arithmetic
complexity. It is highly efficient for large kernel size (>5) because of the
large number of convolutional operations between the feature maps and
kernels [117,118]. For small kernels where FFT is not preferred, Wino-
grad transform [119] provides an alternative way to reduce the number
of multiplications by reusing the intermediate results. It can offer
7.28 x runtime speed-up compared to GEMM when running VGGNet on a
Titan X GPU [118], and deliver the throughput of 46 GOPs when running
AlexNet on FGPA [120].

Data-path optimization: In order to fully exploit the parallelism, data
path is optimized by unrolling the convolutional layers in CNNs and
mapping them onto a limit number of PEs. In early FPGA
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implementations, PEs are arranged in a 2D grid as a systolic array
[121-123]. Because such a simple architecture limits the CNN kernel size
and does not offer data caching, it cannot achieve extremely high per-
formance. Recently, loop optimization techniques, including loop reor-
dering, unrolling, pipelining and tiling, have been proposed to address
the aforementioned issue. Loop reordering tries to prevent redundant
memory access between loops to increase cache usage efficiency [124].
Loop unrolling and pipelining maximize the utilization of FPGA re-
sources by exploring the parallelism of loop iterations [115,125,126].
Loop tiling deals with the issue posed by insufficient on-chip memory of
FPGAs. It partitions the feature maps and weights of each layer fetched
from memory into chunks, also referred to as tiles, to fit them into
on-chip buffers [124,125,127].

Model compression: DNNs often carry a significant number of redun-
dant parameters and are mainly used for error-tolerant applications.
Hence, a lot of efforts have been made to simplify DNN models and,
consequently, reduce the complexity of their hardware implementation.
These model compression methods can be broadly classified into three
different categories: (i) pruning [115,128-131], (ii) low-rank approxi-
mation [114,132], and (iii) quantization [114,121,133-137].

First, pruning is usually the first step to reduce model redundancy by
removing the least-important connections and/or parameters. Taking
CNN as an example, we can remove its weights that are extremely small
[34] and/or cause high energy consumption [130]. After pruning, the
CNN model is highly sparse and can be efficiently implemented with
FPGA by masking the zero weights for multiplications. Second, low-rank
approximation decomposes the weight matrix of a convolutional or fully
connected layer to a set of low-rank filters that can be evaluated with low
computational cost [114]. Finally, because fixed-point arithmetic re-
quires less computational resources than floating-point arithmetic,
feature maps, weight matrices and/or convolutional kernels can be
quantized by using a fixed-point representation to further reduce the
computational cost.

A straightforward approach is to encode each numerical value with
the desired word-length according to its range [114,121]. Alternatively,
a dynamic scheme may be adopted to assign different scaling factors to
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different numerical parameters within the same network [133,134].
When the dynamic quantization method is applied to both the convolu-
tional and fully-connected layers of AlexNet without fine-tuning, the
classification accuracy is almost unchanged (<1%) [135].

In the extreme case, a DNN may use binary weights and activations,
resulting in an extremely compact representation that is referred to as
binary neural network (BNN) [115,133,136,137]. A BNN can be evalu-
ated with extremely low computational cost, as binary addition and
multiplication can both be implemented with simple logic gates. Other
than BNN, a ternary DNN [138] sets its weights to +1, 0 or —1, allowing
each weight to be represented by 2 bits. On the other hand, the numerical
operations in all neurons are implemented with floating-point arithmetic
(FP32).

Table 3 summarizes the performance of several typical CNN models
deployed on FPGA using different model optimization methods. CNN
models based on quantized arithmetic are highly efficient in terms of
hardware utilization and power consumption; however, their accuracy is
often compromised. On the other hand, CNN models based on low-rank
approximation (e.g. SVD) and pruning carry a smaller number of weights,
while simultaneously achieving high classification accuracy. The ternary
ResNet [115], implemented with Intel StratixTM 10 FPGA [140], ach-
ieves a throughput of 12 TGOP/s, outperforming the throughput of Titan
X Pascal GPU by 10%.

To make a comprehensive comparison of the state-of-the-art hard-
ware accelerators, we present the key performance metrics of several
mainstream accelerators (i.e. CPU, GPU and FPGA) with different
network models (i.e. VGG and ResNet) in Table 4 [141]. The FPGA
cluster in Table 4 is composed of 15 FPGA chips, as described in
Ref. [142]. Two important observations can be made from the data in
Table 4. First, the throughput of FPGA is substantially higher than that of
CPU, but it is often lower than the throughput of GPU. Second, among
FPGA, CPU and GPU, FPGA offers the highest energy efficiency.

3.3. Application-specific hardware accelerators

A typical computer system is often heterogeneous, composed of a

Table 3
Performance comparison of FPGA-based CNN accelerators.
CNN Model FPGA Device Optimization Accuracy # of Param Computation Precision  Frequency Throughput Power
Method (Top-5) o) (GOP) (MHz) (GOP/s) W)
VGG-19 [139] Arrial0 - 90.1% 138 30.8 float32 370 866 41.7
GX1150
VGG-16 [114] Zynq 72045 SVD 87.96% 50.2 30.5 fixed16 150 137 9.6
VGG-16 [134] Arrial0 Dynamic 88.1% 138 30.8 fixed8 150 645 -
GX1150
BNN: XNOR-Net Stratix5 Binary 66.8% 87.1 2.3 fixed1 150 1,964 26.2
[137] GSD8
Ternary ResNet Stratix10 Ternary, pruning 79.7% 61 1.4 float32 500 12,000 141.2
[115]
Table 4
Performance comparison of neural networks on difference hardware platforms [141].
Model Platform Device Precision Frequency. (MHz) Throughput (GOP/s) Energy Efficiency (GOP/j) Power (W)
VGG-19 CPU Xeon E5-2650v2 float32 2,600 119 0.63 95
GPU GTX TITAN X float32 1,002 1,704 6.82 250
Cluster w/15 FPGAs XC7 VX690T fixed16 - 1,220° 38.13 -
VGG-16 Cluster w/15 FPGAs XC7 VX690T fixed16 - 1,197% 37.88 -
FPGA Stratix-V GSD8 fixed8 120 117.8 19.1 -
ResNet-152 CPU Xeon E5-2650v2 float32 2,600 119 0.63 95
GPU GTX TITAN float32 1,002 1,661 0.60 250
FPGA Stratix 10 GX 2800 fixed8/16 300 789.44 - -
FPGA Arrial0 GX1150 fixed8/16 240 697.09 - -
FPGA Arrial0 GX1150 float16 150 315.5 - -
ReNet-50 FPGA Arrial0 GX1150 floatl6 150 285.07 - -
FPGA Arrial0 GX1150 fixed8/16 240 599.61 - -

# Measured throughput value of a single FPGA.
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heterogeneous suit of processors, such as CPUs added with other dis-
similar processors, to meet the specific computing requirement. Pro-
cessors that complement CPUs are known as application-specific
coprocessors. In addition to the notable coprocessors such as GPUs and
FPGAs, there are several specialized hardware units in the form of either
stand-alone devices or coprocessors that are particularly developed for
deep learning and/or other Al applications.

Tensor processing unit (TPU) [143,144], a customized ASIC devel-
oped by Google, is a stand-alone device specifically designed for neural
networks and tailored for the Google Tensorflow framework [108]. TPU
targets a high volume of low-precision (e.g., 8-bit) arithmetic. It has
already powered many applications at Google, such as the search engine
and AlphaGo [144]. Intel Nervana neural network processor (NNP) [145]
is designed to provide the required flexibility of deep learning primitives
while making its core hardware components as efficient as possible.
Mobileye EyeQ [146] is a family of SoC devices specialized for vision
processing in autonomous driving. It shows the ability of handling
complex and computationally intensive vision tasks, while maintaining
low power consumption.

Various Al coprocessors for mobile platforms are developed recently,
where an arms race seems around the corner. The mobile processor
Qualcomm Snapdragon 845 contains a Hexagon 685 DSP core that
supports sophisticated, on-device AI processing in camera, voice and
gaming applications [147]. Imagination Technologies [148] develops a
series of neural network accelerators (NNAs), such as PowerVR Series
2NX/3NX NNA. They are intellectual property (IP) cores that are
designed to deliver high performance computation and low power con-
sumption for embedded and mobile devices. The new “neural engine” by
Apple [149], incorporating Apple A11/A12 Bionic SoC, is a pair of pro-
cessing cores dedicated for specific machine learning algorithms,
including Face ID, augmented reality, etc. HiSilicon Kirin 970 is the first
mobile Al platform developed by HUAWEI [150]. With a dedicated
neural processing unit (NPU), its new heterogeneous computing archi-
tecture improves the throughput and energy efficiency by up to 25 x and
50 x respectively over a quad-core Cortex-A73 CPU cluster.

4. Conclusions

As a scientific discipline, computer vision has been a challenging
research area and received significant attention. With the emergence of
big data, advanced deep learning algorithms and powerful hardware
accelerators, modern computer vision systems have dramatically
evolved. In this paper, we conduct a comprehensive survey on computer
vision techniques. Specially, we have highlighted the recent accom-
plishments in both the algorithms for a variety of computer vision tasks
such as image classification, object detection and image segmentation,
and the promising hardware platforms to implement DNNs efficiently for
practical applications, such as GPUs, FPGAs and other new generation of
hardware accelerators.

In the future, increasingly compact and efficient DNNs are needed for
real-time and embedded applications. In addition, weakly supervised or
unsupervised DNN schemes must be investigated to perceive all object
categories in all open world scenes. Furthermore, highly energy-efficient
hardware engines are required to extend the existing accelerators to a
broad spectrum of challenging scenarios. To address the aforementioned
grand challenges, massive innovations of computer vision systems, in
terms of both algorithm developments and hardware designs, are ex-
pected over the next five or even ten years.
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